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ABSTRACT

This paper is concerned with the static, one-dimensional modelling of a
semiconductor device (namely the pn-junction) when a bias is applied. The
governing equations are the well known equations describing carrier transport
in a semiconductor which consist of a system of five ordinary differential

equations subject to boundary conditions imposed at the contacts. Because of
the different orders of magnitude of the solution components at the
boundaries, we scale the components individually and obtain a singular
perturbation problem.

We analyse the equilibrium case (zero bias applied) and set up
approximate models, posed as singularly perturbed second order equations, by
neglecting the hole and electron current densities. This makes sense for
small forward bias and for reverse bias.

For the full problems we prove an a priori estimate on the number of
electron-hole carrier pairs and derive asymptotic expansions (as the
perturbation parameter tends to zero) by setting up the reduced system and the
boundary layer system. We prove existence theorems for both systems and use
the asymptotic expansion to solve the model equations numerically and analyse
the dependence of the solutions on the applied bias.,
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with the mathematical modelling of a diode. This

device consists of a semiconductor, say silicon, which is doped with positive

ions on one side and with negative ions on the other side. We take the

standard equations describing hole-electron transport in a semiconductor and

reformulate them (by scaling of the dependent and the independent variables)

as a singularly perturbed system of ordinary differential equations (that

means at least one derivative of a dependent variable is multiplied by a small

parameter, called perturbation parameter) subject to boundary conditions. The

dependent variables are the electrostatic potential, the carrier densities and

the current densities.

The advantage of the singular perturbation approach is that asymptotic

expansions of solutions (as the perturbation parameter tends to zero) can be

derived and used for the analysis and numerical solution of the model

equations.

We present an analytical and numerical study of the equations (using the

asymptotic expansions) and investigate how the behavior of the model depends

on the bias applied to the contacts of the diode.
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A SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM

MODELLING A SEMICONDUCTOR DEVICE

Peter A. Markowich*, Chr. A. Ringhofer**,
Siegfried Selberhern*** and Erasmus Langer***

1. Introduction

This paper is concerned with the following physical situation. A semicon-

ductor (for example silicon) is doped with acceptor atoms (positive ions) in

the left side (p-side), with donor atoms (negative ions) in the right side (n-

side) and a bias U= UA -UC  is applied to the contacts:

anode p-side n-side cathode

contact contact

-20 2 z

The device is assumed to have characteristic length 22 = 5x 10 3cm and the pn-

junction is assumed to be in the middle. A description of the physics of this

device can be found in Ashcroft and Mermin (1976) and R.A. Smith (1978).

The model equations governing the static one-dimensional case are (see

de Mari (1968)):

(a) " = 9(n-p-C(z)) Poisson's equation

(b) n' = Ln n*1 + electron current relation
Dn qD nnn n

(c) p, = -P*' i jp hole current relation
n qDp p

(d) J' = qR(n,p) continuity equation for electronsn

(e) J' = -qR(n,p) continuity equations for holesp
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for -2 < z < A subject to the boundary conditions

ni

(a) *(-A) - UTAn p(+lUA (anode)

(b) *(A) =UT- n n + UC  (cathode)
T n (1.2)

(c) n(±+)p(±+) = n 2

(d) n(±+I).-p (_J).-C (+_ A) - 0,

where we require that *, n, p, Jn J p [ C ([-1O) U (0,11) holds.

The set of full equations (dynamic, two-dimensional) can be found in Van Roosbroeck

(1950).

The dependent variables (with units) in (1.1) are

4potential (V)

U electron density (cm"3 )

p hole density (cm -)

Jn electron current density (A/cm2)

J p hole current density (A/cm 2

Of course, we only admit solutions fulfilling n > 0, p > 0.

All parameters in (1.1), (1.2) (except C(z)) and the temperature (T Z 300K)

are assumed to be constant. The function C(z), called doping profile (or im-

purity distribution), is given by

C(Z) N A() - Z() (cm" 3) (1.3)

where + is the donor density and N; is the acceptor density. C(z) is negative

in [-A,0) (p-side) and positive in (0,J] and is assumed to jump at z= 0

(abrupt junction). In this paper we also assume that C(z) is odd, that rC(z)l

varies moderately and
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0 <M < C(z) ~C(1) 1Ol 7 cm " , z C (0,1 (1.4)

The physical meaning (and numerical value) of the other parameters in (1.1),(1.2)

is given in Table 1.

TABLE I- PARAMETERS AT T-300K

Parameter Physical Meaning Numerical Value

q elementary charge 10"lgAsec

C dielectricity constant 10 12Asec/Vcm

4n electron mobility 103cm2 /Vsec

Pp hole mobility 103 cm 2 /Vsec

D electron diffusion constant 25cm 2/secn

D hole diffusion constant 25cm 2/secP

ni intrinsic number 10 1cm,3

D D
UT = = -k thermal voltage 0.025V

T n Ip

Temperature- and space-dependent modelling of these parameters can be found in

Langer, Selberherr and Mader (1981) and Selberherr (1981).

R(n,p) in (1.1)(d),(e) is called recombination rate.

We take the Shockley-Read-Hall (SRH) term (see Langer, Selberherr and Mader

(1981))
2

np-ni - )R(n,p) =r(n+p)+2rni (cm'3sec )(1.5)
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where T= 10"6sec is the electron (and hole) lifetime. Validity restrictions

for the SRH-term and various other ways of modelling the recombination rate

are given in the above cited references and in R.A. Smith (1978).

The pn-junction is forward biased if U= UA -U C > 0 and reverse biased if

U < 0. The boundary conditions (1.2) (c) represent thermal equilibrium at z = +I

and (1.2)(d) represent vanishing space charge (the contacts are assumed to be

Ohmic).

The system (1.1),(1.2) was solved numerically by Langer (1980) using a

first order difference method and computations for the corresponding two-dimensional

model (and for MOS-transiators)and can be found in Selberherr (1981).

The approach taken in this paper is to scale (1.1),(1.2) in such a way that

a singular perturbation problem is obtained. This is suited to the problem since

the solutions exhibit internal layer structure (at z= 0) due to the jump-discon-

tinuity of the doping profile (and since the coefficients in (1.1) are of different

orders of magnitude (see Table 1 and (1.4)). Moreover the oddness of C(z) will

be used in order to obtain an equivalent problem on the half-interval [0,21

(which is of boundary layer type).

The advantage of this procedure is two-fold. Firstly, asymptotic expansions

of solutions (as the perturbation parameter converges to zero) can be obtained and

secondly the problem can be solved numerically using already developed (high order)

methods for boundary layer problems (for example, polynomial collocation as used in

this paper). Vasileva and Butuzow (1978), Vasileva and Stelmakh (1977) and D. Smith

(1980) proceeded in this way obtaining asymptotic expansions for a simplified problem

(they assumed that the recombination rate R is a known function only depending on z).

The paper is organized as follows. In Section 2 we perform the scaling and re-

formulate (1.1),(1.2) as boundary layer problems on the half-interval. Section 3
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is concerned with the case U= 0 and with zero-current-density models. In

Section 4, we derive asymptotic expansions, demonstrate some qualitative prop-

erties of the solution, and explain the numerical results. In Appendix A we

give proofs of Theorems on the zero-current-density models and Appendix B is

concerned with collocation methods for singular perturbation problems.

2. Reformulation as Singular Perturbation Problem

From (1.2)(c),(d), (1.4) and from n > 0, p > 0 we conclude

n(A) = p(-A) = (C( ) + )C(Z)2+n 2 - C(2)(+0(O 1)) (2.1)(a)

p(A) = n(-4) = (-C(i) + _C()2+ni ) = C(1)O(10 1 4) (2.1)(b)

(C(z)= -C(-z) holds!) Therefore we set

n= n , ..L D'-Czs= I Ps D (z) (z) (2.2)(a)ns C(T) P C(L) C = (8)

and
rJ TJ

, 2 -' s (2.2)(b)
ns  41qC(1) Ps 41qC(R) s T

We also scale the independent variable

- (2.3)

and get the system
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s .t2 C t ( U-P -D (x))
8 UTC a

2
8s 8 Dn Jnn'+

n8

2

' - 4' p J -1 < x < 1 (2.4)
S rD

p

8 c-In 4 n

np+ps+ 2
8' 8 Cj

PS ns

with boundary conditions

n 1

C1
(b) (1)- n () UUT

(b) *s(l) In +U +

(2.5)

.ni L2

(c) no(±)p(±l) = ( 2F'-)

(d) n(±1)-p (±) -(±1) 0

We set

2 UTC 2 q

2 U C (2.6)
I C (.S)q T

Using the values for the parmueters given in Section 1 and dropping the sub-

script s, we obtain
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(a) ;29,, = n-p-D(x)

(b) n = Of +J

(c) p' = " p4' -JP

(2.6)

(d) np-y X(d) J1 --=
n 4 In+p+2y 2-A2

(e) if np-¥' 4

p 4 u+2, 2

for - < x <. I subject to the boundary conditions

(a) in(l) 4 A
-' -. p(-l) UT

Uc(b) *(I = + I + n n--1)-+ L-yJ*2 UT
(b) ()n UT (2.7)

(c) n(+l)p(+,) = 4

(d) n(+l)-p(+l) - (+l) = 0

where "A2 0.4x 10 6  =0.25. All quantities in (2.6),(2.7) are dimensionless.

The problem (2.5), (2.6) will be regarded as singular perturbation problem

with perturbation parameter 7\. Physically, decreasing X (A * 0+) means that

2
the concentration of impurities increases (C(i)+). Note that y is independent

of C U).

So far, we have not heavily used the oddness of C(z) (except for (2.1) and

(2.7)(d)l For the performed scaling we only have to require that IC(z)I is of

the same order of magnitude for all z e [-A,]. Now we will use the oddness

assumption in order to reduce the problem (2.6),(2.7) to the half-interval 10,1],

thus making the internal layer at x= 0 (called depletion-layer or space-charge

region in this context) to a boundary layer.
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Since only 4", 4' enter the equations (2.6), the substitution ( (x)= (x) -

+ does not change (2.6). Boundary conditions for 14 are
2

*() -- '+ , 4* (-1) = -' (2.8)
+ 2+

and -*+(-)-4*(1)=4.-+ holds. Therefore we can assume (without loss of generality)

that

-=-+ (UC = -A (2.9)

holds. Moreover, given a solution (*,n,p,J p ) of (2.6),(2.7) we imediately

verify that

41W() = -*(-x)

n1 (l) = p(-x)

PI (x) = n(-x) (2.9)

Jn (x)=J p(-x)

JP(x) J n(-x)

constitutes another solution, since D is odd and since the SRH recombination

rate (1.5) is symmetric in n and p. Therefore we investigate (2.6) on [0,1]

subject to the boundary conditions

(a) (l) = 4+, *(0) = 0

(b) n(l)p(1) = 44?4, n(1) - p() = 1
(2.10)

(c) n(O) = p(O)

(d) J n(O) =J p(0)

and continue the solution to (-1,1] according to (2.9).
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We have to expect a boundary layer (as ? * 0+) at x= 0 in the solution

components *, *', n, p (which are the fast variables), the slow (unperturbed)

components J , J will be uniformly smooth (in _), no boundary layer will occurn p

at x= I since the reduced solution-manifold (?'= 0), which is given by

n-p-D(x)= 0, satisfies the (reduced) boundary condition (2.10)(b), given by

p(l)= 0, (l)= 1. A proof for this will be given in Section 4.

3. Zero-Current Approximations

We are now concerned with the calculation of the built-in-potential (no

voltage is applied, UA 
= UC = O). For simplicity we assume D=l in this Section.

Setting J =J =0 we get from (2.6)(b),(c)
n p

n = Ae , p = Be , A,B e R (3.1)

and from (2.6) (d), (e) we obtain AB= y ?\ The boundary conditions (2.10(a), (b), (c)

imply A=B =22 and

'(I) = hn LI + FI+ 4Y 2  =] 'V ) , 0N(0) = 0 . (3.2)

Inserting (3.1) into (2.6)(a) gives the equation for the built-in-potential

?2,, = YIN2 (e -e ) - 1 , 0 < x < 1 (3.3)

subject to the boundary conditions (3.2).
0

This problem is slightly nonstandard since Y+C- n 1- , as 0 +
+12

and since the reduced equation (3.3) (? '0) is inconsistent.

We obtain the following existence result:

Theorem 3.1. For A sufficiently small, the problem (3.2), (3.3) has a locally

unique solution *0 fulfilling
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C

(x CX(l V() +O0(e> (3.4)

where C > 0, V (0)=-, V,(y) 4 0 as y * and

0 < V (y) S exp((-l+ )y) y > const. InIn (3.5)

holds for some 0 < 5 < 1.

The proof is given in Appendix A.

The corresponding carrier densitits n,p are given by (3.1):

0 NV ))( x 2)
no(x,-) = exp(- _Y A)V())(+0(y2)) (3.6) (a)

PO ffi 1A 4 exp( *+ C)V 1 ( +)) ( _+ 2 .2 )) . (3.6) (b)

0 0
Since U- 2UT( 'CA)-*+) the pn-Junction is forward biased for *+ < 4O('\) and

reverse biased for + > 00.

Theorem 3.1 encourages us to consider approximate problems for (2.6), (2.10)

(with *+ -;O() obtained by setting Jn pobtaned y sttin 3=J -0 in (2.6)(b),(c) and ignoring

(2.6)(d),(e) (equilibrium models). For the two-dimensional case, this was

suggested by Polak et al (1981).

One of the boundary conditions in (2.10)(b), (c) has to be ignored

(since (2.10)(b),(c) are consistent with J =J = iff ' =*-(A)).

At first we drop the condition n(l)p(l) y (thermal equilibrium at the

contacts) and get from (3.1), (2.10)(b), (c)

'A2V,)=-s -i1 , 0 < x <1 (3.7)
ainh(

*(0) =0, (1) =- + . (3.8)
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For *+' 4 0 O\) (3.7),(3.8) gives (3.3),(3.2). Because we require n > 0, p O,

the model (3.7), (3.8) is relevant only for *+ - 0.

We get as a generalization of Theorem 3.1:

Theorem 3.2. Assume that 'A is sufficiently small and that

0 < c+ <+ < 1- (3.9)
2?

holds for < < 1, 0 < F < 1 independent of -A, +.* Then the problem (3.7),

(3.8) has a locally unique solution \V e= *(xX,*+) fulfilling

e Ln'l ) fuflln

'e + (I -V +(-) + 0 (exp ( ! ) A, * 0 + (3.10)

uniformly in *+ where V /+(O) =I, V*+ (y) 0 as y-)-- and

0 < V+/ (y) < exp((-I +E)y) , y > const. in* + (3.11)

holds.

The proof is given in Appendix A.

The carrier densities ne pe are calculated from (3.1), (3.7) giving

e e= e e (312)
e 2sinh('+) ' e 2sinh( * ) (

For the existence proof (and for n,p > 0) without uniform asymptotics (in Y+)

'+ > 0 is sufficient .

The width d of the depletion layer of 'V is estimated using (3.10):e

d < const.2n[l I as 0 - 0+ (3.13)

uniformly for *+ satisfying (3.9) where const. 1.
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The width of the layer depends logarithmically on *+ for fixed ?.

Figures I and 2 show the computed potential U T e  and the hole density p

respectively (on the interval [0,0.00121) for *+= 10, which corresponds to

U Z 0.306V (foward) bias since (for the parameters given in Section 1)

* C) 16.118.

The second equilibrium model we investigate is obtained by dropping the

symmetry condition n(O)= p(O). From (2.10)(b) we get

I ( +Jl + 4 A p(1, -!(-l +I +4 (3.14)

and therefore A=n(l,A)e , B=p(l,')e Poisson's equation then reads

= n(l,?)e (* -* +) ..p(l,)e= (* -*) - 1 , 0 < x < 1 (3.15)

subject to the boundary conditions (3.8).

We get

Theorem 3.3. For every * + e R and -A < C(/ ) the problem (3.15), (3.8) has

a locally unique solution *' fulfillinga

*a = (l-W+ ( ) + O(y¥ 4 )) , 'A * 0+ (3.16)

where W * (0)= 1, W ' (Y)$ 0 as y * o and
+ +

0< W (y) < const. exp((-l+&)y) , y "> 0 (3.17)

holds. (For the proof see Appendix A.)

Figures 3 and 4 show the computed curves U T a  and pa respectively (on

[0,0.0121) for '+= 0.4 (U=0.786V).

+.. . .I I I I I I . . - I I iln l h . . , , . . .
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In order to set up the third possible equilibrium model the vanishing-space-

charge condition n(l) -p(1)= I has to be neglected. Since the analysis for this

is quite similar to the analysis of (3.7), (3.8), we do not give details.

A comparison of numerical results obtained for the equilibrium models and the

full nonequilibrium model (see next section) shows that the agreement is excellent

as long as U < 0.3V (compare Figures 1 and 15) since then JJ +J < 5x10 -9

n p

holds. The agreement gets rapidly worse as U increases, since J increases ex-

ponentially with U (compare Figures 3 and 8).

4. The Nonequilibrium Problem

At first we prove an a priori estimate on the number of electron-hole (carrier)

pairs.

Theorem 4.1. Assume that the problem (2.6) and (2.10) has a solution for which

n > 0, p >0 holds and J , J do not change sign in [0,I]. Then J > 0,- - n p n -

J > 0, J 0, J 0 holds for forward bias (*+ < *+0Q)) and J <, J <,
P n p + + n- p

0
J n0, Jp J0 holds for reverse bias (*+ > *+(O)). Moreover, the estimate

,Y4 exp(.4T) < n(x)p(x) <Y 4 exp(uU T) 0<x <1 (4.1)
UT UT

holds.

The assumptiontof the Theorem are physically reasonable since n,p are the

(scaled) numbersof carriers and since the currents do not change direction in the

device.

Proof. It is more convenient to work with the problem (2.6), (2.7) (with

1}I -- J -).

" " ' . . .. . . . . . + . . . . . . . I I m . . . - "i I i .. . I I . . I I
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We get from (2.6) (b), (c)

n = (E + Se i(s)i (s)ds)e (4.2) (a)

x ,(S)j
p = (F - • (s)ds)e" (4.2) (b)J1 P

-4+ '1+
Obviously n(-I) =Ee , p(-l) -Fe holds. - . 1(1

From (2.7)(c) we conclude EF=Y4 4  and (2.7)(d) gives Ee + -Fe = -1.

From these equations and from n >- 0, p > 0 we calculate

E = 1 e (-. +4YA) (4.3)(a)

F = -1e (l ),r +.-4, (4.3)(b)

We define

x = V (s)j nsWds (4.4)(a)

= 1e  (s) jp(s)ds (4.4)(b)

and get from the boundary conditions (2.7(c),(d) at x= 1:

(E+X)-(FY) = 4\4 (4.5)(a)

e (E+X)-e (F-Y) = 1 • (4.5)(b)

This system of equations has the solutions X= Y- 0 and

X - F-E, Y = X. (4.6)

The trivial solution X- Yf 0 implies Jn EJ p 0 (since JnJp are not

allowed to change sign) and this implies np=y 4  and *+= 4 QA). Therefore

we take (4.6). X-Y is also an immediate consequence of the symmetry (2.9).
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0
A simple calculation shows that X > 0, Y > 0 iff *+ < W+(?) (forward bias)

and X < 0, Y < 0 iff + > * 0Q) (reverse bias). This proves the sign-statement

on J ,Jn p

Also

n(x)p(x) = (E +3e (S n (s)ds)(F - e *(s)j (s)ds) (4.7)

holds. Therefore we get for forward bias

E2 = E(F-X) _ n(x)p(x) < (E+Y)F = F 2  (4.8)(a)

and for reverse bias

2 =2
F = (E+X)F < n(x)p(x) <E(F-Y) = E (4.8)(b)

Using (4.3) and (3.2) gives (4.1).

Expressing (4.1) in the unscaled variables n,p (2.2)(a) gives

niexp(-44 < n(z)p(z) < nexp , -2 < z < 2 (4.9)
SUT UT

This estimate was anticipated by de Marl (1968). There is numerical evidence that

for forward bias n(z)p(z) is close to the upper bound while for reverse bias it

is close to the lower bound.

We remark that the explicit form of the recombination rate R(n,p) was not

used for the proof of Theorem 4.1 (except for excluding the equilibrium case

J nJ =0).n p

Now we assume that D . C([O0,1]) and that the solutions of (2.6), (2.7) have

an asymptotic expansion given by
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%(X / W p (v (a) jn(xdO) n. (x) n (r) i()

p (X) + i P+
Jn(x T.) j (x) /Jn (v) 3n (a)

.3 j

_x l-x
T=- , a 1= (4.10)

where *,,ni , J 3n i are smooth on [0,l, 'V(T), n (T), p (T),

s -- (r), 3pj (r) and (a), n (), p (C), in. 3(a), Jp (a) are defined on

[0,-) and decay(exponentially) to zero as r * oo and a + c respectively.

The functions marked with '-' are the boundary layer terms decaying from

the left boundary and the functions marked with are the boundary layer

terms decaying from the right boundary.

Inserting (4.10) into (2.6), comparing coefficient, setting N=0 and

using that the boundary layer terms vanish asymptotically away from the

corresponding boundary gives the reduced problem

(a) 0 ; -"o "D (x)

(b) nO1 +

(c) ~'

o  4< 1 (4.11)

(d) ' Inp

(e) if - 1 fop0
PO 4 0 + 50

the (zeroth order) left boundary layer system

L_
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(a) *0.n0 P

(c) o- (po+po (O)) 0 <r < - (4.12)

(d) J n ono

(e) P o 0P0

and the (zeroth ordei) right boundary layer system

K A
(a) 0 n 0 PO

^(b) no =  (no0 +; 0(1)) 0

(c) Po " (o+5o())*o o < a < (4.13)

A

(d) J = 0

(e) J 0P0

where ' .' denotes differentiation with respect to r or a respectively.

The boundary conditions (2.10) give

(a) o(O) + ;70o(0) = 0

(b) o(o) + =no(O) = Po(0) + -po(O) (4.14)

(c) n (0) +n (0) =P (0) +P (0)no no O P

and

(a) q'o(1) + *'o(0 = *+

(b) ) + no(O) = 1 (4.15)

(c) Po(I) + po(O) = 0
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since (2.10)(b) reduces to n(l)= 1, p(l)= 0 for -A= 0. The systems

(4.11), (4.12), (4.13) were obtained by proceeding similarly to O'Malley (1978),

Vasileva and Butuzow (1978) and Vasileva and Stelmakh (1977).

From the decay of the layer terms and from (4.12)(d),(e), (4.13)(d),(e),

we iinediately get

T S =0, = - 0 (4.16)
n0  P0  n0  P0

J J are the slow (unperturbed) components which do not exhibit layer behaviour.
p

Now we show that no boundary layers at x= 1 occur.

Integrating (4.13) (b), (c) gives

ffi 0(1)( -1) , po(a) fi P0 (1) (e -104.7OW0 0aa

n 0 (0) - 0(1)(e 1) PW P 1 e-1) (4.17)

0o (0 ) " 0o( )
From (4.15)(b) we conclude n0 (1)e =I and p0 (1)e 0 and therefore

;0(1)=i 0. This gives

^Po(a) = 0 (4.18)

(4.11)(a) gives 0()= 1 and therefore %/0(0)= 0 holds. From (4.13)(a) and

from the decay of *O(a) we conclude

*0O(a) = 0 n nOWa 0 -(419)

Boundary layers of order zero can only occur at x= 0.

Integrating (4.12) (b), (c) gives

nO() 0(0)(e -1) , p0(r) = p0 (0)(e - ) (4.20)

From (4.14)(b) we conclude
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n0(0)e = p 4()e (4.21)

and since ;0(0) = -0(0) ((4.14) (a)) we find the missing boundary condition

for the reduced system:

" 0o(0) ~ 0 (0 )
no(O)e o(O)e (4.22)

The reduced system of equations can now be obtained in closed form from (4.11) by

substituting p0 = 0 -D(x) into (4.11)(b)-(e) and by eliminating from

(4.11)(b),(c). We drop the subscript 0 and get

(a; (D'(x)+ J -J )-D(x)Jn

(a) n'
2n-D(x)

D' (x) - (J )(b) 4,1 n=

2n-D (x)

(c) , 1 n(;-D(x)) 0 < x < 1 (4.23)
n 4 2;-D(x)

(d) '= " 4
2n -D(x)

(e) p = n-D(x)

subject to the boundary conditions

(a) J (0) = J n(O)

(b) (;(O)-D(O))e 2 T(0) ; n(0)

(4.24)

(c) V(1) =

j (d) i()= .
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From (6-12)(a), (4.20) we get the boundary layer equation

;(0)e -(nn(0)-D(0))e 'D(O) 0 0< T < (4.25)

7I(o) = -4'(0) , ~(~) 0 .(4.26)

Higher order terms of the expansion (4.10) can be obtained analogously, however,

we will not do so.I

At first we prove

Theorem 4.2. Assumne that D(0) > 0, 5(0)= = () -D(0) > 0. Then the boundary layer

equation (4.25),(4.26) has a unique monotonely increasing solution ';'(,), ful-

filling

-C bexp( (0) + (0) )(1 -5)T) <'I'(T) !< -C 1 exp(- 4 (;()-+ (O))(1.+5)T) (4.27)

on [0,oo] for any b >0 with Cb> 0.

Proof. The substitution p=-Vgives the problem

(p p (0)e if(Q)~ e- + D (0) k4.28)(a)

(P (0) = *V(0) , pc)=0 .(4.28)(b)

For D(0) > 0, ;(0) -D(0) > 0 we get 'V(0) > 0 from (4.24)(b). Applying Fife's

(1973) Lemmna 2.1 to (4.28)(a),(b) yields the result.

If D(0)= 0 holds, a locally unique solution of (4.25),(4.26) is given by

'F=-0 which fiplies n-=p=s.

No boundary layers occur if the junction is not abrupt (see also D. Smith

(1980) for a simplified model).
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The width d of the boundary layer (depletion layer) of ' can be calculated by

taking C,= *(0) and by expressing n(0), p(O) in terms of *(0).

d (D(O) 2 D(0)+() e D(0) 1 I (4.29)2 ()_ e 2 ; ( 0 ) I

(4.29) should be compared to (3.13) taking into account the Theorem 4.3.

Assuming the validity of the expansion (4.10), p(0) - 0 (which implies

n(0) -" D(O) N 0) is necessary for p,n > 0 if ? is sufficiently small since

n(O,A) = n(O) + n(O) + 0() = n(O)e 7(0) + 0CA) (4.30)(a)

p(O,'%) = p(O) + p(0) + 0(A) = p(O)e (0) + 0(N) (4.30)(b)

holds. p(O)= 0 is impossible because of (4.24)(b).

Since *+= '0 (X) --- holds, the reduced problem (4.23), (4.24) can be regarded+ 2UT

as dependent on N for U < U0. We now pro, an existence result for this case.

Theorem 4.3. Assume that D e C ([0,1]) and D(x) '> M N 0 on [0,11 and that

U < U0 , U0 < 2\V0()UT (4.31)

holds. Moreover if

U0<-- 0 =  -A0 T  (4.24)

holds, then the reduced problem (4.23), (4.24) has a locally unique solution

fulfilling

. ... .. ..... .
nI
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I1

(a) (x) = 4+ + In D(x) + 0.4+

1
(b) n(x) = D(x) + 0(7+

(c) p(X) = 0+ (4.25)
4/+

(d) (x)f 01 + + CO
iI 4+

l (e) p(x) 0 o 00
p1

Proof. We substitute (9=l - - set + = a

(4.24) (b), (c)

J2 D'-(JJ)
-( +,P %)2 D n +3 p(4.26) (a)

2;-D

(0 - 2 - (n(0)-D(0)) 0 (4.26)(b)

p (0) 4V+

(l) f 0 .
(4.26)(c)

We rewrite the reduced problem in operator form F (z) = 0 where

F 0 C ( I Q0,1i)) 4 + (C([0,1]))4 x R 4 , 2 open and z= (p,n,j , Jp)
+

2 D -(jn +j) n(D4 n jp) - DJn )- 3,

F (Z) ( 6-n+ , n 4
(P+ 2n-D 2n-D 2n-D

;(1) , (1)-1, (0)-3(0) , (4.27)

2;-Dn

(0)exp( 2 )- (n(O)-D(0)))

,P (0)-Hp4

The spaces are equipped with their natural norms (see Appendix 
A).
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We define

0 (0,D,0,0) e Q (4.28)

and evaluate F at z0

F ((--0, 0,,0, 0, 0,0, D(0)exp(2)) (4.29)

This yields consistency

l F +O)ir < const. 2 as p+ 0 0+ (4.30)

We calculate the linearization F+ ( O ) and investigate the equation
4,O R 4 .  -au

F z0) = (fc), f e (C((O,lJ))
4 , w e So we obtain the linear boundary-value

problem:

2 2

D' 2 D' + '+
-2p+ --- 2,P D -D -D

D

0 0'g -l

y y + f , 0 < x < I (4.31)(a)

0 1 0 0
- 14

0 1.0
4
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Y2 w =  2
(4.31) (b)

Y3 (0)-Y4 (O) = o 3

2D0 ex - 2 -) y (0) + (exp(- 2 " l)y(0) W4

(P+

The perturbed problem

0 0 0 0

0 - 0 -1D

u= u + g, 0 < x < (4.32)(a)

00 0

0 0 0

4

ul (l) = P1

u2 (l) = P2

(4.32) (b)
u3 (0) -u4 (O) = P3

u2 (0) = P4

4 4
has a unique solution for all g c (C([0,1)) 4 , p e R fulfilling

4
IIUII[0,l] + 1Iu'I1[0,] < const.(IJfIl[o, 1] + . Ioll) (4.33)

t=e

if f the homogeneous problem
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vi -(In D)'v I - v 3

iv (4.34) (a)

4 41

v 1 (1) =0 , vl (O) =0 . v2 (0) V3 v(0) (4. 34) (b)

has only the trivial solution va=O. This holds iff

y I + (ASn D)'Iy' ly = 0 * y'(O) = y'(l 0 (4.34)(c)

has only the trivial solution y=v -0, which follows from the maximum principle

since M, Stn D)'< M 2  holds.

The contraction mapping theorem assures the unique solvability of (4.31) (for

4 4
(p+ sufficiently small) for all f e (C([0,1])) 6 £ P and the stability

estimate

III011+ IIY1[0,11 <Klflj 0 ,1 +~ FIY (4.35)

where K1I is independent of c

An easy calculation shows the uniform Lipschitz continuity of F' locally

around z

IJF' Cu)-F' (v)II S K2 1-I (4.36)
+p

with IJu-Z 0 11,1v- 0I : P and K 2  is independent of (p + . Applying Keller's (1975)

theory we conclude that the equation F +(z) = 0 has a locally unique solution

z =z ((p+) if (p +< c(K,K 2) which fulfills
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2
II (( )-' oll[o,1 ]  + IR: (,+)- ll[o,11 i const. ( (4.37)

This translates immediately into the existence statement given in Theorem 4.3
1

(using (+= ). (4.25(b)-(e) follow from (4.37) and (4.25)(a) follows
4A) 2U

from (4.23)(a).

If D- then the first component in F (z0 is zero and instead of (4.30)

we get

IF (O )II = exp( - 2 . (4.38)

Therefore the 0(-)-terms in (4.25) can be substituted by O(exp(-2 'I+))

and the bound A0 in (4.24) can be chosen larger.

Questions that arise are whether the asymptotic expansion (4.10) actually

represents a solution of (2.6), (2.10) and whether (4.10) is uniform in 4+ in

some sense (this is particularly interesting in context with Theorem 4.3). For

simplified pn-Junction models the first question was positively answered by D. Smith

(1980), Vasileva and Butuzow (1978) and Vasileva and Stelmakh (1977). For a

validity proof of the asymptotic expansion (4.10) (for *+=O(1) as 'A0+) one

has to proceed similarly to the references cited above (particularly Vasileva

and Butuzow (1978)).

Our numerical experiments show that the expansions are valid in the sense

that a numerical solution of (2.6), and (2.10) can be obtained by using the sum

of the reduced solution and the boundary layer solution as initial guess for the

numerical scheme for (2.6) and (2.10) and this obtained solution is close to the

initial guess.

For the following computations the parameter values from Section 1 and

D(x) 3= 1 were taken.
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Figures 5 through 7 show the reduced solutions U T , n, n , for 4+= 0T' n p

which correspond to a forward bias U= 0.806V. The corresponding full solutions

U T, n, p (of (2.6), (2.10)) are shown in Figures 8 and 9. Jn and Jp are not

shown since they differ inappreciably from J 3 . Figures 10 and 11 shown'p

3n nT for U= 1.506V (*+- -14 ) and for U= 0.306V (*+= 10) respectively.

We get the following Table 2 for the total current J=J +J p n +3

*+ U d

10 0.306V 4,4 x 10
9

0 0.806V 0.92

-14 1.506V 108.2

Table 2: Current-Voltage Relation

U
The characteristic curve J= J(U-) behaves exponentially (see A. Smith (1978),

T
Section 7.9).

The computations demonstrate that 4(0) + 0+as 4+ #.c= and therefore

the jump of the boundary layer of 4' tends to zero. Since

n(O) = -D 0)e(4.39) (a)

p(O) = D(0) 1 (4.39) (b)

e (°)+l

hold, the layer jumps of n and p tend to R . This is illuatrated
2

by the Figures 12 and 13 which show the solutions U T and n, p (of (2.6), (2.10))

respectively, for *+-i -14 (U- 1.506V). No layer in U T is visible arid the layers
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of n, p are of approximate height 0.5 (see also Figure 14 which shows the

corresponding boundary layer solutions n, p).

Figures 15 and 16 show the solutions U 4 and n respectively with

U =0.306V(*4= 10). The corresponding hole density p is nearly constant zero

(indistinguishable from the x-axis). * and n are (disregarding the layers)

nearly constant. The explanation for this behaviour is given by Theorem 4.3.

Since D(x) =1 the estimate (4.25) can be strengthened (see remark to Theorem 4.3):

Ii'-4'+I[0,1+ i1;-ll [0.1 ] + IIII[ 0,1] + 1n I [0,1] + 13p 1[0,1] <_ const.(exp(- 2 '+)) (4.40)

and 2 '+ = 20.

Since ;(0) ~-+ as 4+ + the boundary layer jump of 4 grows at 4+, the

jump of the layer of n tends to D(0) and the jump of the layer of p tends

to zero exponentially (see (4.39)). The width of the depletion layer which is given

by (4.29) grows logarithmically with * + for constant ? . Figures 17,18,19,20 show

the growth of the layer of UT. Figure 21 shows the boundary layer solution n for

U=-19.194V (reverse bias). The depletion region is almost free of carriers

(since n-l+n, p-0).
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Appendix A

Proof of Theorem 3.2. We substitute

= + (l-v) (Al)

and the problem (3.7),(3.8) transforms to

2 (2-v) - + vl e -e

F(*+'7 v)(x)f (2v" -2 " +1), v(O)-l, v(i)) 0 (A2)

+ I -e *+

We denote

+ , (2-v) - , +

(, V) i.e 2 -e + 1) (A3)

1-e -2

with g(*+, 0) = 0, gv(*+, 0) = e +-2 > 0 for *J+ > 0. The boundary layer

1-e

equation for (A2), (A3) is given by

V" = g(*+ , V) , 0 < y < (A4)

v(0) = I , v() = 0 .(AS)

By proceeding as in Fife (1973) (proof of lemma 2.1) we find that (A4),(A5) has

a unique monotone solution V- V + fulfilling (for * + '_ + > 0)

0 < V+, (y) S exp((-l +6)y) , y _ const.ln + (A6)

where 0 < b < 1 and the constant depends on 5 only. The linearization of

F(*+,N,.) (viewed as operator from C 2([0,11) into C([0,1])xR 2 ) at
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V+(x,?') = V (i) is given by

(L(V + ,)Y)(X) = CA+y"(X) 9 V* (x,'7))Y(X) , y(O) , y(l)) . (A7)
+ i

tn C[0,11) we take Iuf = 2  i) for the following. Analogously
j=O

to Fife (1973), Lemma 2.5, we get

1l ^,+ -1l<cns.7"  * +

JL *+cnt. e (AB)

where the constant is independent of 2, '4+. Moreover, the linearization L

fulfills

JI L(U,? ) -L (,,X)I<_ const. * +e + IIu-vI (A9)

for lIU- 11 , I-, + 1 .

By inserting V into (A2) we get using (A6)

++
JIF(* , v +I < exp ((AlO)

From Spijker (1972) we conclude that (A2) has a locally unique rolution v if

94'+

exp(- ) +e e < p (All)

for some p sufficiently small. Then

liv-v, +(x,?)ll <S const. 7\lexp( ,+ +(1) (A12)

holds. (All) follows immediately from (3.9) and (3.10) follows from (A12)

j by using (Al).
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Theorem 3.1 is a special case of Theorem 3.2 with + 0(?). (3.9) holds,

therefore (3.4), (3.5) follow immediately.

Proof of Theorem 3.3. Again ua substitute

= + (l-v) (A13)

and get from (3.15),(3.8)

2 V+ p "?(l el,") -n(l,?)e ) 0 < x < (A14)

v(O) = 1 , v(l) = 0 • (AI5)

The reduced equation (A14) has the solution v=O. From Fife (1973) we conclude

that the semi-reduced problem

2 - ) , 0 x < 1 (A16)

w(O) = , w() = 0 (Al7)

which is obtained by setting ?-0 in the right hand side of (A14), has a

solution fulfilling

w(x,?) = 0(exp( !(-l+)x)) +0(exp(-c)) , c > 0 , 0 < b < I (A18)

if 'A is sufficiently small (depending on 4). From Ringhofer (1980), (1981) we

conclude that the linearization of (A16), (Al?) at w(x,A) is uniformly stable with

respect to ?\. Since p(l,? )=O(y 4 ) holds we get (3.16) by a simple perturbation

argument (similar to the proof of Theorem 3.2).

Remark. Theorem 3.3 is no' formulated uniformly in * +
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Appendix B

For the numerical solution of two-point boundary value problems we used

polynomial collocation at Gaussian points (see de Boor and Swartz(1973), Russell

(1974) and Weiss (1974)). This method translates into a system of (nonlinear)

difference equations (if the two-point boundary value problem is nonlinear)

which has to be solved numerically by an iterative method (for example Newton's

method) starting from an initial guess for the solution (which has to be

sufficiently accurate for the iteration to converge).

The order of convergence depends on the number k of collocation points in each

subinterval. For Gauss points the global error at the grid points is an O(h 2 k )

where h is the maximal mesh size assuming that the linearized system of difference

equations has a uniformly (as h O) bounded inverse.

We used the code COLSYS (see Ascher, Christiansen and Russell (1973) and

Ascher (1981)) as collocaticn solver with k=3 or k= 4.

A problem affecting stability and consistency of the collocation scheme is

the choice of the mesh. COLSYS is a completely adaptive code refining an initial

mesh automatically in order to achieve a prescribed error tolerance. However, we

did not use this option for solving boundary layer problems. Instead we prescribed

a mesh which is exponentially graded in the layer region and coarse outside (where

the solution is close to reduced solution) (see Ascher and Weiss (1981)). This

mesh equidistributes the local discretization error and employs only a reasonable

number of mesh points (error estimates and estimates on the number of mesh points

are given in Markowich and Ringhofer (1981) for a similar class of problems).

The boundary layer equations (4.25), (4.26) were solved by cutting the infinite

interval at a finite, far out point and by substituting an additional boundary

condition at this point for the condition at infinity (see Markowich (1981) and

Markowich and Ringhofer (1981)).
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